KDTree, unbalanced, points in leaves, stack, implicit bounds, ANN_KD_SL_MIDPT, optimised implementation.
More...
|
typedef NearestNeighbourSearch< T, CloudType >::Vector | Vector |
|
typedef NearestNeighbourSearch< T, CloudType >::Matrix | Matrix |
|
typedef NearestNeighbourSearch< T, CloudType >::Index | Index |
|
typedef NearestNeighbourSearch< T, CloudType >::IndexVector | IndexVector |
|
typedef NearestNeighbourSearch< T, CloudType >::IndexMatrix | IndexMatrix |
|
enum | SearchType {
BRUTE_FORCE = 0
, KDTREE_LINEAR_HEAP
, KDTREE_TREE_HEAP
, KDTREE_CL_PT_IN_NODES
,
KDTREE_CL_PT_IN_LEAVES
, BRUTE_FORCE_CL
, SEARCH_TYPE_COUNT
} |
| type of search More...
|
|
enum | CreationOptionFlags { TOUCH_STATISTICS = 1
} |
| creation option More...
|
|
enum | SearchOptionFlags { ALLOW_SELF_MATCH = 1
, SORT_RESULTS = 2
} |
| search option More...
|
|
typedef Eigen::Matrix< T, Eigen::Dynamic, 1 > | Vector |
| an Eigen vector of type T, to hold the coordinates of a point
|
|
typedef Eigen::Matrix< T, Eigen::Dynamic, Eigen::Dynamic > | Matrix |
| a column-major Eigen matrix in which each column is a point; this matrix has dim rows
|
|
typedef Cloud_T | CloudType |
| a column-major Eigen matrix in which each column is a point; this matrix has dim rows
|
|
typedef int | Index |
| an index to a Vector or a Matrix, for refering to data points
|
|
typedef Eigen::Matrix< Index, Eigen::Dynamic, 1 > | IndexVector |
| a vector of indices to data points
|
|
typedef Eigen::Matrix< Index, Eigen::Dynamic, Eigen::Dynamic > | IndexMatrix |
| a matrix of indices to data points
|
|
|
| KDTreeUnbalancedPtInLeavesImplicitBoundsStackOpt (const CloudType &cloud, const Index dim, const unsigned creationOptionFlags, const Parameters &additionalParameters) |
| constructor, calls NearestNeighbourSearch<T>(cloud)
|
|
virtual unsigned long | knn (const Matrix &query, IndexMatrix &indices, Matrix &dists2, const Index k, const T epsilon, const unsigned optionFlags, const T maxRadius) const |
|
virtual unsigned long | knn (const Matrix &query, IndexMatrix &indices, Matrix &dists2, const Vector &maxRadii, const Index k=1, const T epsilon=0, const unsigned optionFlags=0) const |
|
unsigned long | knn (const Vector &query, IndexVector &indices, Vector &dists2, const Index k=1, const T epsilon=0, const unsigned optionFlags=0, const T maxRadius=std::numeric_limits< T >::infinity()) const |
| Find the k nearest neighbours of query.
|
|
virtual unsigned long | knn (const Matrix &query, IndexMatrix &indices, Matrix &dists2, const Index k=1, const T epsilon=0, const unsigned optionFlags=0, const T maxRadius=std::numeric_limits< T >::infinity()) const =0 |
| Find the k nearest neighbours for each point of query.
|
|
virtual unsigned long | knn (const Matrix &query, IndexMatrix &indices, Matrix &dists2, const Vector &maxRadii, const Index k=1, const T epsilon=0, const unsigned optionFlags=0) const =0 |
| Find the k nearest neighbours for each point of query.
|
|
virtual | ~NearestNeighbourSearch () |
| virtual destructor
|
|
|
typedef std::vector< Index > | BuildPoints |
| indices of points during kd-tree construction
|
|
typedef BuildPoints::iterator | BuildPointsIt |
| iterator to indices of points during kd-tree construction
|
|
typedef BuildPoints::const_iterator | BuildPointsCstIt |
| const-iterator to indices of points during kd-tree construction
|
|
typedef std::vector< Node > | Nodes |
| dense vector of search nodes, provides better memory performances than many small objects
|
|
typedef std::vector< BucketEntry > | Buckets |
| bucket data
|
|
|
uint32_t | createDimChildBucketSize (const uint32_t dim, const uint32_t childIndex) const |
| create the compound index containing the dimension and the index of the child or the bucket size
|
|
uint32_t | getDim (const uint32_t dimChildBucketSize) const |
| get the dimension out of the compound index
|
|
uint32_t | getChildBucketSize (const uint32_t dimChildBucketSize) const |
| get the child index or the bucket size out of the coumpount index
|
|
std::pair< T, T > | getBounds (const BuildPointsIt first, const BuildPointsIt last, const unsigned dim) |
| return the bounds of points from [first..last[ on dimension dim
|
|
unsigned | buildNodes (const BuildPointsIt first, const BuildPointsIt last, const Vector minValues, const Vector maxValues) |
| construct nodes for points [first..last[ inside the hyperrectangle [minValues..maxValues]
|
|
unsigned long | onePointKnn (const Matrix &query, IndexMatrix &indices, Matrix &dists2, int i, Heap &heap, std::vector< T > &off, const T maxError, const T maxRadius2, const bool allowSelfMatch, const bool collectStatistics, const bool sortResults) const |
| search one point, call recurseKnn with the correct template parameters
|
|
template<bool allowSelfMatch, bool collectStatistics> |
unsigned long | recurseKnn (const T *query, const unsigned n, T rd, Heap &heap, std::vector< T > &off, const T maxError, const T maxRadius2) const |
| recursive search, strongly inspired by ANN and [Arya & Mount, Algorithms for fast vector quantization, 1993]
|
|
| NearestNeighbourSearch (const CloudType &cloud, const Index dim, const unsigned creationOptionFlags) |
| constructor
|
|
void | checkSizesKnn (const Matrix &query, const IndexMatrix &indices, const Matrix &dists2, const Index k, const unsigned optionFlags, const Vector *maxRadii=0) const |
| Make sure that the output matrices have the right sizes. Throw an exception otherwise.
|
|
|
static NearestNeighbourSearch * | create (const CloudType &cloud, const Index dim=std::numeric_limits< Index >::max(), const SearchType preferedType=KDTREE_LINEAR_HEAP, const unsigned creationOptionFlags=0, const Parameters &additionalParameters=Parameters()) |
| Create a nearest-neighbour search.
|
|
static NearestNeighbourSearch * | createBruteForce (const CloudType &cloud, const Index dim=std::numeric_limits< Index >::max(), const unsigned creationOptionFlags=0) |
| Create a nearest-neighbour search, using brute-force search, useful for comparison only.
|
|
static NearestNeighbourSearch * | createKDTreeLinearHeap (const CloudType &cloud, const Index dim=std::numeric_limits< Index >::max(), const unsigned creationOptionFlags=0, const Parameters &additionalParameters=Parameters()) |
| Create a nearest-neighbour search, using a kd-tree with linear heap, good for small k (~up to 30)
|
|
static NearestNeighbourSearch * | createKDTreeTreeHeap (const CloudType &cloud, const Index dim=std::numeric_limits< Index >::max(), const unsigned creationOptionFlags=0, const Parameters &additionalParameters=Parameters()) |
| Create a nearest-neighbour search, using a kd-tree with tree heap, good for large k (~from 30)
|
|
template<typename WrongMatrixType > |
static NearestNeighbourSearch * | create (const WrongMatrixType &cloud, const Index dim=std::numeric_limits< Index >::max(), const SearchType preferedType=KDTREE_LINEAR_HEAP, const unsigned creationOptionFlags=0, const Parameters &additionalParameters=Parameters()) |
| Prevent creation of trees with the wrong matrix type. Currently only dynamic size matrices are supported.
|
|
template<typename WrongMatrixType > |
static NearestNeighbourSearch * | createBruteForce (const WrongMatrixType &cloud, const Index dim=std::numeric_limits< Index >::max(), const unsigned creationOptionFlags=0) |
| Prevent creation of trees with the wrong matrix type. Currently only dynamic size matrices are supported.
|
|
template<typename WrongMatrixType > |
static NearestNeighbourSearch * | createKDTreeLinearHeap (const WrongMatrixType &cloud, const Index dim=std::numeric_limits< Index >::max(), const unsigned creationOptionFlags=0, const Parameters &additionalParameters=Parameters()) |
| Prevent creation of trees with the wrong matrix type. Currently only dynamic size matrices are supported.
|
|
template<typename WrongMatrixType > |
static NearestNeighbourSearch * | createKDTreeTreeHeap (const WrongMatrixType &, const Index dim=std::numeric_limits< Index >::max(), const unsigned creationOptionFlags=0, const Parameters &additionalParameters=Parameters()) |
| Prevent creation of trees with the wrong matrix type. Currently only dynamic size matrices are supported.
|
|
const CloudType & | cloud |
| the reference to the data-point cloud, which must remain valid during the lifetime of the NearestNeighbourSearch object
|
|
const Index | dim |
| the dimensionality of the data-point cloud
|
|
const unsigned | creationOptionFlags |
| creation options
|
|
const Vector | minBound |
| the low bound of the search space (axis-aligned bounding box)
|
|
const Vector | maxBound |
| the high bound of the search space (axis-aligned bounding box)
|
|
static constexpr Index | InvalidIndex = invalidIndex<Index>() |
| the invalid index
|
|
static constexpr T | InvalidValue = invalidValue<T>() |
| the invalid value
|
|
template<typename T, typename Heap, typename
CloudType = Eigen::Matrix<T, Eigen::Dynamic, Eigen::Dynamic>>
struct Nabo::KDTreeUnbalancedPtInLeavesImplicitBoundsStackOpt< T, Heap, CloudType >
KDTree, unbalanced, points in leaves, stack, implicit bounds, ANN_KD_SL_MIDPT, optimised implementation.