|
enum | SearchType {
BRUTE_FORCE = 0
, KDTREE_LINEAR_HEAP
, KDTREE_TREE_HEAP
, KDTREE_CL_PT_IN_NODES
,
KDTREE_CL_PT_IN_LEAVES
, BRUTE_FORCE_CL
, SEARCH_TYPE_COUNT
} |
| type of search More...
|
|
enum | CreationOptionFlags { TOUCH_STATISTICS = 1
} |
| creation option More...
|
|
enum | SearchOptionFlags { ALLOW_SELF_MATCH = 1
, SORT_RESULTS = 2
} |
| search option More...
|
|
typedef Eigen::Matrix< T, Eigen::Dynamic, 1 > | Vector |
| an Eigen vector of type T, to hold the coordinates of a point
|
|
typedef Eigen::Matrix< T, Eigen::Dynamic, Eigen::Dynamic > | Matrix |
| a column-major Eigen matrix in which each column is a point; this matrix has dim rows
|
|
typedef Cloud_T | CloudType |
| a column-major Eigen matrix in which each column is a point; this matrix has dim rows
|
|
typedef int | Index |
| an index to a Vector or a Matrix, for refering to data points
|
|
typedef Eigen::Matrix< Index, Eigen::Dynamic, 1 > | IndexVector |
| a vector of indices to data points
|
|
typedef Eigen::Matrix< Index, Eigen::Dynamic, Eigen::Dynamic > | IndexMatrix |
| a matrix of indices to data points
|
|
|
unsigned long | knn (const Vector &query, IndexVector &indices, Vector &dists2, const Index k=1, const T epsilon=0, const unsigned optionFlags=0, const T maxRadius=std::numeric_limits< T >::infinity()) const |
| Find the k nearest neighbours of query. More...
|
|
virtual unsigned long | knn (const Matrix &query, IndexMatrix &indices, Matrix &dists2, const Index k=1, const T epsilon=0, const unsigned optionFlags=0, const T maxRadius=std::numeric_limits< T >::infinity()) const =0 |
| Find the k nearest neighbours for each point of query. More...
|
|
virtual unsigned long | knn (const Matrix &query, IndexMatrix &indices, Matrix &dists2, const Vector &maxRadii, const Index k=1, const T epsilon=0, const unsigned optionFlags=0) const =0 |
| Find the k nearest neighbours for each point of query. More...
|
|
virtual | ~NearestNeighbourSearch () |
| virtual destructor
|
|
|
static NearestNeighbourSearch * | create (const CloudType &cloud, const Index dim=std::numeric_limits< Index >::max(), const SearchType preferedType=KDTREE_LINEAR_HEAP, const unsigned creationOptionFlags=0, const Parameters &additionalParameters=Parameters()) |
| Create a nearest-neighbour search. More...
|
|
static NearestNeighbourSearch * | createBruteForce (const CloudType &cloud, const Index dim=std::numeric_limits< Index >::max(), const unsigned creationOptionFlags=0) |
| Create a nearest-neighbour search, using brute-force search, useful for comparison only. More...
|
|
static NearestNeighbourSearch * | createKDTreeLinearHeap (const CloudType &cloud, const Index dim=std::numeric_limits< Index >::max(), const unsigned creationOptionFlags=0, const Parameters &additionalParameters=Parameters()) |
| Create a nearest-neighbour search, using a kd-tree with linear heap, good for small k (~up to 30) More...
|
|
static NearestNeighbourSearch * | createKDTreeTreeHeap (const CloudType &cloud, const Index dim=std::numeric_limits< Index >::max(), const unsigned creationOptionFlags=0, const Parameters &additionalParameters=Parameters()) |
| Create a nearest-neighbour search, using a kd-tree with tree heap, good for large k (~from 30) More...
|
|
template<typename WrongMatrixType > |
static NearestNeighbourSearch * | create (const WrongMatrixType &cloud, const Index dim=std::numeric_limits< Index >::max(), const SearchType preferedType=KDTREE_LINEAR_HEAP, const unsigned creationOptionFlags=0, const Parameters &additionalParameters=Parameters()) |
| Prevent creation of trees with the wrong matrix type. Currently only dynamic size matrices are supported.
|
|
template<typename WrongMatrixType > |
static NearestNeighbourSearch * | createBruteForce (const WrongMatrixType &cloud, const Index dim=std::numeric_limits< Index >::max(), const unsigned creationOptionFlags=0) |
| Prevent creation of trees with the wrong matrix type. Currently only dynamic size matrices are supported.
|
|
template<typename WrongMatrixType > |
static NearestNeighbourSearch * | createKDTreeLinearHeap (const WrongMatrixType &cloud, const Index dim=std::numeric_limits< Index >::max(), const unsigned creationOptionFlags=0, const Parameters &additionalParameters=Parameters()) |
| Prevent creation of trees with the wrong matrix type. Currently only dynamic size matrices are supported.
|
|
template<typename WrongMatrixType > |
static NearestNeighbourSearch * | createKDTreeTreeHeap (const WrongMatrixType &, const Index dim=std::numeric_limits< Index >::max(), const unsigned creationOptionFlags=0, const Parameters &additionalParameters=Parameters()) |
| Prevent creation of trees with the wrong matrix type. Currently only dynamic size matrices are supported.
|
|
template<typename T, typename Cloud_T = Eigen::Matrix<T, Eigen::Dynamic, Eigen::Dynamic>>
struct Nabo::NearestNeighbourSearch< T, Cloud_T >
Nearest neighbour search interface, templatized on scalar type.
template<typename T , typename Cloud_T = Eigen::Matrix<T, Eigen::Dynamic, Eigen::Dynamic>>
Find the k nearest neighbours for each point of query.
If the search finds less than k points, the empty entries in dists2 will be filled with InvalidValue and the indices with InvalidIndex.
- Parameters
-
query | query points |
indices | indices of nearest neighbours, must be of size k x query.cols() |
dists2 | squared distances to nearest neighbours, must be of size k x query.cols() |
k | number of nearest neighbour requested |
epsilon | maximal ratio of error for approximate search, 0 for exact search; has no effect if the number of neighbour found is smaller than the number requested |
optionFlags | search options, a bitwise OR of elements of SearchOptionFlags |
maxRadius | maximum radius in which to search, can be used to prune search, is not affected by epsilon |
- Returns
- if creationOptionFlags contains TOUCH_STATISTICS, return the number of point touched, otherwise return 0
template<typename T , typename Cloud_T = Eigen::Matrix<T, Eigen::Dynamic, Eigen::Dynamic>>
Find the k nearest neighbours for each point of query.
If the search finds less than k points, the empty entries in dists2 will be filled with InvalidValue and the indices with InvalidIndex.
- Parameters
-
query | query points |
indices | indices of nearest neighbours, must be of size k x query.cols() |
dists2 | squared distances to nearest neighbours, must be of size k x query.cols() |
maxRadii | vector of maximum radii in which to search, used to prune search, is not affected by epsilon |
k | number of nearest neighbour requested |
epsilon | maximal ratio of error for approximate search, 0 for exact search; has no effect if the number of neighbour found is smaller than the number requested |
optionFlags | search options, a bitwise OR of elements of SearchOptionFlags |
- Returns
- if creationOptionFlags contains TOUCH_STATISTICS, return the number of point touched, otherwise return 0
template<typename T , typename CloudType >
Find the k nearest neighbours of query.
If the search finds less than k points, the empty entries in dists2 will be filled with InvalidValue and the indices with InvalidIndex. If you must query more than one point at once, use the version of the knn() function taking matrices as input, because it is much faster.
- Parameters
-
query | query point |
indices | indices of nearest neighbours, must be of size k |
dists2 | squared distances to nearest neighbours, must be of size k |
k | number of nearest neighbour requested |
epsilon | maximal ratio of error for approximate search, 0 for exact search; has no effect if the number of neighbour found is smaller than the number requested |
optionFlags | search options, a bitwise OR of elements of SearchOptionFlags |
maxRadius | maximum radius in which to search, can be used to prune search, is not affected by epsilon |
- Returns
- if creationOptionFlags contains TOUCH_STATISTICS, return the number of point touched, otherwise return 0